
INTRODUCTION
Many authors use the incompressibility of the material

in the theory of creep as the starting point for calculating
stresses. The condition of incompressibility in the problems
of creep deformations is one of the most important
assumptions which simplify the problem. Moreover, in some
cases, it is impossible to find the closed form solutions
without these assumptions. It is well known that there are
many materials which show compressibility effect in creep
deformation. Seth [1] has developed the transition theory of
creep, which does not require assumptions of
incompressibility condition, and yield conditions. It utilizes
the concept of generalized strain measure and asymptotic
transition through the critical points of the differential system
defining the deformation field. A number of problems have
been solved using this measure [3-6].

In this paper, creep stresses in circular cylinder of a
transversely isotropic material,subjected to torsion have
been calculated using the concept of generalized strain
measure.

Seth [7] has defined the generalized strain measure for
uni-axial case as,
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Where n is the measure; m is the irreversibility index;
and l0, l are the initial and strained lengths respectively. For
n = 0, 1, 2,-1,-2, it gives the HENCKY, SWAINGER,
ALMANSI, CAUCHY and GREEN measure respectively.

GOVERNING EQUATIONS
Consider a circular cylinder of radius ‘a’ subjected to

finite twist. The components of displacement in cylindrical
co-ordinates are given by,

u = r(1 – β); v = ∝ r z and w = d.z ...(2)

Where β = β(r) function of r = 2 2x y+  only, ∝ is

angle of twist per unit length and d is a constant.

The generalized components of strains from = n (1) are,
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erθ = ezr = 0, Where Dn = [1 – (1 – d)n].

The stress-strain relations for transversely isotropic
material are [10, 11],

Trr = C11 err + (C11 – 2C66)eθθ + C13 ezz,

Tθθ = (C11 – 2C66)err + C11 eθθ + C13 ezz, ...(4)

Tzz = C12 (err + eθθ) + C32 ezz,

Tθz = C44 eθz,

Tzr = Trθ = 0.

Using equation (3) in (4), we get transitional stresses
generalized forms are,
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Tzr = Trθ = 0. ...(5)

The equations of equilibrium are all satisfied except
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[Trr – Tθθ] = 0. ...(6)

Using equation (5) in (6), we get a non-linear differential
equation in β as,

P (1+ P)n – 1 β
dP

dβ ...(7)

Secondary creep holds when m = 1, then = n (7) reduces
to,
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The transitional points of β in equation (8) are

P → – 1 and P → + ∞. ...(9)

The boundary conditions are

Trr = 0 at r = a. ...(10)

and
0

a

r∫ Tzz dr = 0. ...(11)

The twisting couple W is given by

W = 2 π
2

0

a

r∫ Tθz dr ...(12)

SOLUTION THROUGH THE PRINCIPAL
STRESS

It has been shown [8, 12, 13] that the asymptotic
solution through the principal stress-difference at the
transition point P → – 1 leads to creep state.

We define the transition function R as,

R = Trr – Tθθ
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Substituting the value of
dP

dβ  from = n(7) in logarithmic

differentiation of   = n(13) and taking the asymptotic value,
we get,
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Integrating = n (14), we get,

R = 2 2(2 )[1 {1 } ]c cn mAr− −− −β ...(15)

Where c2 = 2C and A is a constant of integration.

For secondary state of creep (m = 1), equation (15)
reduces to,
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Using equation (5) in equation (16), we have,
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Using boundary conditions (10) and (11) in equation
(17), we get the value of A1 and B,

B = – A ×
22 ( 1)
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Putting the value of B in (17), (18) and (19), we get
transitional creep stresses as,
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The value of A1  is obtained from (11) and (22), we
have,

A1  = 662C

n
 [2 – 2n + c2 (n – 1)] [ ]22 ( 1)n c na + −

...(23)

The asymptotic value of β  is found by solving
equations (13) and (15), is,
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Using equation (24) in (4), we get shearing stress as,
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The twist couple is given from equation (12) as,
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The relation betweeen W and Tθz is
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The maximum shearing stress occurs at r = a, is given
by

Tmax  =
1
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Where Te = 2

2W

aπ
 = elastic maximum shear stress.

ISOTROPIC MATERIAL
For isotropic materials, the material constants reduces

to two only [11], i.e.,

C11 = C22 = C33,

C12 = C21 = C13 = C31 = C23 = C32 = (C11 = – 2C66).

In terms of Lame’s constant  and , these can be written
as,

C12 = λ, C66 =
1

2
 (C11 – C12) ≡ µ and C11 = λ + 2µ.

...(29)

Where c =
2

EMBED Equation.3

µ
+ µ .

Creep transitional stresses (20), (21) and (22) for
isotropic material becomes,
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The shearing stress for isotropic material becomes,
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and maximum shearing stress for isotropic material is given
by,
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For incompressible material i.e., c → 0, then
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This expression of shearing stress is given by Marin[2]

provided we put n =
2

N
.

N U M E R I C A L  I L L U S T R AT I O N A N D
D I S C U S S I O N

As a numerical example, elastic constants Cij have been
given in Table 1 for transversely isotropic material [10]
(C2 = 0.64, Magnesium) and isotropic material [14] (Brass, C
= 0.50, σ = 0.33).

Table : 1. ELASTIC CONSTANTS  (In units of
1010 N/m2).

C44 C11 C12 C13

Transversely Isotropic Material 1.64 5.97 2.62 2.17
(C2 = 0.64, Magnesium)

Isotropic Material 0.99997 3.0 1.0 1.0

(C = 0.50, Brass)

For calculating creep stress distribution based on above
analysis the following values of measure n have been taken

n =
1

3
, 2, 3 (i.e. N = 2/n = 6, 1, 0.66)

Curves have been drawn in Figures 1, 2, 3; between
shear stress ratio and radii ratio (r/a) for transversely
isotropic material (C2 = 0.64, Magnesium) and isotropic
material (Brass, C = 0.50, σ = 0.33) and c = 0 represents the
curve for isotropic incompressible material.

It can be seen from Figures 1, 2, 3; that cylinder made
of transversely isotropic material, the shear stress is maximum
at outer surface as compare to cylinder made of isotropic
material which further increases with the increase in measure
n.

For n = 2 & c = 0, elastic shear stress curve is obtained.
The value n = 1/3 is considered to take account of the
classical results obtained by Marin [2].

0 0.2 0.4 0.6 0.8 1 1.2
0

1.4

1.2

1

0.8

0.6

0.4

0.2

RADII RATION (r/a)

o
t
a
l
s
s
e
d
s
r
a
e
s
h

c = 0

c = 0.50

c2 = 0.64

Fig.1.

RADII RATION (r/a)

c = 0

c = 0.50

c2 = 0.64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

1.4
1.6

1.8
2

O
T
A
R
S
S
E
R
T
S
R
A
E
R
S

Fig.2.



Mahajan 101

RADII RATION (r/a)

c = 0

c = 0.50

c2 = 0.64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

2.2

2.4
2.6

S
H

E
A

R
S

T
R

E
S

S
R

AT
IO

Fig.3.

REFERENCES
[1] B.R. Seth, Rep. Math Centre Univ. Wisconsin, N.,

321: 1(1962).

[2] J.Marin, Prentice-Hall, Inc, 385(1966).

[3] B.R. Seth, ZAMM, 43: 345(1963).

[4] B.R. Seth, J. Math. Mech., 12: 205(1963).

[5] B.R. Seth, J. Math.  Phys. Sci., 6: 1(1972).

[6] B.R. Seth, J. Math.  Phys. Sci., 8(1): 1(1974).

[7] B.R. Seth, int. Jr. Non-Linear Mechanics, 1: 35(1970).

[8] B.R. Seth, ZAMM, 50: 617(1970).

[9] B.R. Seth, ZAMM, 44: 229(1964).

[10]  A.E.H. Love, A Treatise on the Mathematical Theory
of Elasticity, 4: 161(1944).

[11] I.S. Sokolnikoff, Mathematical Theory of Elasticity,
Mc-Graw Hill Book Coy. 2: 66(1950).

[12] S. Hulsarkar, ZAMM, 46: 431(1966).

[13] S.K. Gupta and R.L. Dharmani, Indian J. of Pure
Appld. Math., 8(9): 1049(1977).

[14] H.B. Huntington, The Elastic Constants in Solid
State Physics, 7: 213(1958).


